Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials

نویسندگان

  • Jiandong Xu
  • Qiuming Gao
  • Yunlu Zhang
  • Yanli Tan
  • Weiqian Tian
  • Lihua Zhu
  • Lei Jiang
چکیده

Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m(2) g(-1) is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA(+), diameter = ~0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 μF cm(-2) and high energy density of 10/39 Wh kg(-1) at power of 52/286 kW kg(-1) in 6 M KOH aqueous electrolyte and 1 M TEABF4 in EC-DEC (1:1) organic electrolyte system, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode.

Co3O4 nanolayers have been successfully deposited on a flexible carbon nanotubes/carbon cloth (CC) substrate by atomic layer deposition. Much improved capacitance and ultra-long cycling life are achieved when the CNTs@Co3O4/CC is tested as a supercapacitor electrode. The improvement can be from the mechanically robust CC/CNTs substrate, the uniform coated high capacitance materials of Co3O4 nan...

متن کامل

Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.

Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels...

متن کامل

Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor

We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...

متن کامل

High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.

Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatmen...

متن کامل

C3nr02710d 7984..7990

Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014